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1. Introduction 

The free-flight motion of a slowly spinning elastic missile has been studied by a number of 
authors (1–6).  Although the theory of Murphy and Mermagen (6) is valid for large spin rates, no 
Magnus force is included in the aerodynamic force distribution.  In this report, the force 
distribution is extended to include a Magnus force distribution function.  The finite element 
method (FEM) (6) is then used to calculate the first five positive frequencies and the first three 
negative frequencies of the motion of a 10-cal. spinning cone cylinder.  The elastic frequencies 
are shown to be strongly affected by the high rate of spin required to stabilize this projectile.  For 
certain values of the elasticity, it is shown that spin resonance can occur with the lower elastic 
positive frequencies, and maximum strain can exceed the plastic limit. 

2. Coordinate System 

The elastic missile is assumed to consist of a very heavy elastic circular rod of fineness ratio, L, 
and mass, m, embedded in a very light symmetric aerodynamic structure that may be longer than 
the rod.  The rod’s axial moment of inertia is xI , and its transverse moment of inertia about its 
center is 0tI .  The rod’s diameter can vary over its length, and its maximum diameter will be 
denoted by d.  All distances will be expressed as multiples of the rod diameter, and its length is 
Ld.  A nose windshield of length, 23x d , may be attached to the forward end of the rod, and fins 
or a boat tail may extend beyond the end of the rod at a distance, 01 .x d   Thus, the rod is located 
between 1 = – 2x L  and 2 = 2x L , while the aerodynamic structure extends from 0 1 01= –x x x  to 

3 2 23= +x x x . 

An earth-fixed coordinate system will be used with the Xe-axis oriented along the initial direction 
of the missile’s velocity vector.  The Ze-axis is downward pointing and the Ye-axis determined by 
the right hand rule.  A nonrotating coordinate system, XYZ is then defined with origin always at  
the center of the rod and the X-axis tangent there.  The X-axis pitches through the angle,θ , and 
yaws through the angle, ,ψ with respect to the Xe-axis.  Body-fixed coordinates, b bXY Z , are now 
defined for which the Yb-Zb axes rotate with the missile. 

We will conceptually slice the missile into a large number of thin disks perpendicular to the  
X-axis with thickness, dx.  When the rod flexes, the disks shift laterally perpendicular to the  
X-axis and cant to be perpendicular to the centerline of the disks.  This canting action neglects 
the shear deformation of the rod, and this constraint is called the Bernoulli assumption (7).  The 
lateral displacement of a disk has body-fixed coordinates , ,by bzδ δ and the disk is canted at angles 

,by bzΓ Γ .
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 ;by bz
by bz

δ δΓ = Γ =
x x

∂ ∂
∂ ∂

 (1) 

 

It is important to note that at the central disk 

 
 ( ) ( ) ( ) ( )0, = 0, = 0, = 0, = 0by bz by bzδ t δ t Γ t Γ t . (2) 

The earth-fixed coordinates of the central disk are ( , ,e e ex y z ), and the earth-fixed coordinates of 
the other disks are computed in terms of the central disk earth-fixed coordinates, their body-fixed 
displacements, and the Euler angles , ,θ ψ φ : 

 ( ) ( ){ } ( ){ }2= + 1– + 2 – + + + ,2 i i
de e by bz by bzx x x ψ θ ψRe δ iδ e θIm δ iδ eφ φ⎡ ⎤⎣ ⎦  (3) 

 ( ){ }= + + + ,i
de e by bzy y xψ Re δ iδ e φ  (4) 

and 

 ( ){ }= – + + i
de e by bzz z xθ Im δ iδ e φ . (5) 

Murphy and Mermagen (5, 6) used the nonspinning elastic coordinate system with XYZ axes.  
( )= 0φ .  The lateral displacements of a disk in this elastic coordinate system are shown in 
figures 1 and 2 and can be computed from body-fixed quantities.  

V
X

Xe

ZZe

α

θ

δEz Γz

Missile Centerline

 

Figure 1.  X-Z coordinates of the cross-sectional disk. 
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Figure 2.  X-Y coordinates of the cross-sectional disk. 

 
 ( )= + = + i

E Ey Ez by bzδ δ iδ δ iδ e φ , (6) 

and 

 ( )= + = + i
y z by bzΓ Γ iΓ Γ iΓ e φ . (7) 

In Murphy and Mermagen (5), the partial differential equation (PDE) for the missile’s flexing 
motion is derived by use of Newtonian mechanics and the assumption that each disk can be 
assumed to be a point mass.  Thus, the canting of the disks is neglected, and their axial and 
transverse moments of inertia are set equal to zero.  The complete Lagrangian is obtained 
including the canting of the disks required by the Bernoulli assumption and is used to obtain a 
more accurate PDE in appendix A.  For the small spin considered, this modification has a very 
small effect on the eigenfrequencies.  For a spin-stabilized projectile, the required spin can be 
30–100 times the aerodynamic frequencies and can have a large effect on the eigenfrequencies. 

3. Aerodynamic Force 

The ey  and ez  components of the central disk velocity can be approximated by linear relations in 
angles of pitch and yaw with respect to inertia axes ( ),θ ψ  and angles of attack and sideslip with 

respect to the velocity vector ( ),α β  (figures 1 and 2).
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 ( )( )=ey V d β+ψ , (8) 

and 

 ( )( )=ez V d α – θ . (9) 

Equations 8 and 9 can be written as a single complex equation: 

 ( )( )+ = ,e e 1 1ey iz V d q +q  (10) 

where 
 = +1q β iα  (11) 

and 

 = .1eq ψ – iθ  (12) 

In Murphy and Mermagen (5), the linear aerodynamic force loading is expressed in terms of 
three force distribution functions, ( ) ( ) ( ), ,D f1 f2c x c x c x  and the base pressure coefficient, DbpC , 
plus a body-fixed force associated with possible bent fins.  The complex angular velocity of the 
central disk is 2 = 1eq q .  Because the lateral motion of the missile is quite small, 1 2 ,q q≅ −  and 
the aerodynamic damping force terms in the aerodynamic loading on the aerodynamic structure 
can be combined.  For a rapidly spinning projectile, we will introduce a Magnus force 
distribution function ( )xc fM .  This aerodynamic loading in nonrotating elastic coordinates is 

 ( )1= –x
D

dF g c x
dx

. (13) 

 
( ) ( ) ( ) ( )( )

( )( )( )
1 1 1

1

2 1

+ – + –
+ = –

+ 2 –
f fM Ey z

f

c x i d V c x q Γ δ xq d VdF dFi g
dx dx c x q Γ d V

φ⎡ ⎤⎡ ⎤⎡ ⎤
⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

. (14) 

 1= –xbp DbpF g C . (15) 

The total aerodynamic force acting on the aerodynamic structure is given by the integrals of 
equations 13 and 14 and by adding the base drag of equation 15 to the axial force: 

 ( )
3

0

1 1= – = – + ,
x

x D D Dbp
x

F g C g c x dx C
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∫  (16) 

and 

 
( )( ) ( )

( ) ( ) ( ) ( )( )
1 1 1 2 1

1

1 1 2

+ +
= –

– – –

M

M

c i d V c q c q d V
F g

J t i d V J t J t d V

φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

, (17) 

where various functions are defined in appendix B.
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Similarly, the transverse aerodynamic moment about the rod’s center can be computed from the 
transverse aerodynamic force and a small axial force contribution: 

 
( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
3 3 1 4 1

1

3 3 4 5

= +

+ +
= –

– – – –

y z

M

M

M M iM

c i d V c q c q d V
i g d

J t i d V J t J t d V J t

φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

.
 (18) 

The primary components of drag are head drag and base pressure drag.  The third component is 
skin friction drag that is ~15% of the total drag and will be neglected in this report to simplify 
the FEM calculations. 

The actual angular motion will be described by aerodynamic moment about the center of mass.  
The static and Magnus moment coefficients, for example, are as follows: 

 3 c 1= –MαC c x c , (19) 

and 

 3 1= –Mpα M c MC c x c , (20) 

where 

 ( )
2

1

1= 1 .
x

c
x

x L xρ dx∫  (21) 

The center of mass of the projectile will be at the center of the rod if the axial mass density along 
the rod, 1ρ , is constant. 

4. Frequencies 

For simplicity, the spin will be required to be always positive.  The angular motion of a statically 
stable rigid missile ( 0<αMC ) can be described by the sum of two complex exponentials: 

 ( ) ( )1 1 2 2

1 10 20= ,R Ri t i tq K e K e+ ++λ φ λ φ  (22) 

where 

 ( ) ( )1 1 –= 2 ± – gmR x t Mαt sI I Cg d Iφ φ  (23) 

and 

 
2 2

1

= x
g

t Mα

Is
I g dC
φ . (24) 
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These two frequencies are opposite in sign and 1 2R R≥φ φ .  The motion of a statically unstable 
missile ( 0>αMC ) will have the same expression if it is gyroscopically stable ( 1>gs ). R1φ  and 

2Rφ  are both positive, but R1φ is still larger than 2Rφ . 

For a nonspinning statically stable missile, 

 1 2= – =R R Rωφ φ  , (25) 

where 

 ( )1=R t Mαω g d I C . (26) 

The frequencies for a statically unstable missile with gyroscopic stability factor equal to 1 have a 
similar form. 

 1 2= =R R Rωφ φ . (27) 

The elastic motion of a homogeneous circular rod with constant diameter is determined by its 
fineness ratio L. and an elastic parameter 2

0ω . 

 2 3
0 0 0=ω E I L md . (28) 

0E  is Young’s modulus at the center of the rod and 0I  is the area moment of inertia at the center 
of the rod.  The standard analysis for a nonspinning free-free beam gives the following relation 
for infinity of elastic frequencies:   

 ( )2
0=K Kω f L ω  , (29) 

where 

 4.730, 7.853,10.996,14.137... .Kf =  (30) 

For the odd number modes, the rod is symmetric U-shaped, whereas for the even number modes, 
the rod is antisymmetric S-shaped. 

In Murphy and Mermagen (6), the parameter 1= Rσ ω ω was used as a measure of the elasticity 
of a finned missile.  We will continue to use this parameter to describe the elasticity of a spin-
stabilized projectile.  For a slowing spinning finned projectile, it has been shown that the 
aerodynamic frequencies are affected by the elasticity when 20<σ .  For a spin-stabilized 
projectile, the first elastic frequency should be compared with the spin and not the aerodynamic 
frequency.  Thus, we will see that the elastic frequencies are affected by the spin when 200<σ . 

The frequencies present in the motion of a nonspinning elastic projectile would form an infinite 
sequence where the first two frequencies would be related to R1φ  and R2φ , while the later ones 
would evolve from ± Kω , i.e., ( )2  +1 2  + 2 .; – for 200K K K Kω ω σ≅ ≅ ≥φ φ   The odd-numbered modes 
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rotate in the direction of the spin, have positive frequencies, and are called positive modes, while 
the even-numbered modes have negative frequencies and are called negative modes.  Since the 
modes for a spinning missile essentially bifurcate,  j = 3 is a symmetric mode rotating in the 
direction of spin,  j = 4 is a symmetric mode rotating in an opposite direction to the spin,  j = 5 is 
an antisymmetric mode rotating in the direction of spin,  j = 6 is an antisymmetric mode rotating 
against the direction of spin, etc. 

5. FEM 

The rod is assumed to be represented by the sum of an inelastic bent component rotating with the 
missile and an elastic deformation. 

 ( ) ( ) ( ) 1 2, = + , ;i
E EB Eδ x t δ x e δ x t x x x≤ ≤φ , (31) 

and 
 ( ) ( ) ( ) 1 2, = + , ; ,b EB bδ x t δ x δ x t x x x≤ ≤  (32) 

where 

 ( ) ( )0
0 = = 0EB

EB

dδ
δ

dx
. (33) 

Because the aerodynamic nose structure is rigidly attached to the rod, 

 ( ) ( ) ( ) ( )2 2 2 2 3, = , + – ,E Eδ x t δ x t x x Γ x t x x x≤ ≤ . (34) 

The motion of the elastic component of the rod is controlled by the elasticity of the rod and the 
aerodynamic force acting on it. 

FEM is a very powerful method for calculating the time history of the elastic flexing motion.  
The rod is divided into jn  elements of length = .e jL L n   We will consider only an odd number 
of elements with the center of the central element satisfying equation 2. 

The shape of the j-th element is given by a linear combination of third-order Hermitian 
polynomials (6). 

 ( ) ( ) ( )
4

1

ˆ, =b bp pδ x t q t N z∑ , (35) 

where 
 ( )= +e jx L z z , (36) 

 1= + –1j ez x L j , (37) 

and 
 0 1z≤ ≤ . (38)
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The coefficients of the polynomials are complex functions of time and are called connectors.  
The first two connectors are the deflection and slope of the left end of the element and the third 
and fourth are the deflection and slope of the right end.  To ensure continuity in deflection and 
slope at junction points, the corresponding pairs of connectors are equal.  For jn  elements, there 
are 2 jn  independent complex connectors, nq .  It is convenient to let the index for the connectors 
run from 3 to = 2 + 2t jn n . 

In Murphy and Mermagen (6), tn  complex second-order differential equations are derived for 
the tn  complex variables nq . 

 ( ) ( )* *

1

,
tn

i
mn n mn mn n mn mn n m

n

R q S i S q T i T q t e
=

⎡ ⎤+ + + + =⎣ ⎦∑ φφ φ  (39) 

where 

 ( )= i
n bny bnzq q iq n e+ φ  (40) 

and 

 ( ) ( )2
1= +m mD mAt md t g d t . (41) 

The tn7  coefficients in equation 41 are defined for no Magnus force in Murphy and 
Mermagen (6).  The inclusion of the Magnus force distribution function, ( )f Mc x , modifies some 

of the *
mnT  and mAt  coefficients in appendix C. 

6. Cone Cylinder Frequencies 

Transient frequencies and damping rates for a 9-cal. cylindrical rod with a 1-cal. conical nose 
can be obtained from the homogeneous part of equations 41, ( 0=mt ).  The necessary parameters 
are given in appendix D.  The first eight frequencies and damping rates for 20=σ  were 
obtained from 3-, 5-, and 7-element codes and are compared with results of the PDE method of 
Murphy and Mermagen (5) (table 1).  The frequencies that differ from PDE results by >5% are 
marked by a “x.”  The 3-element code gives good results for the first four frequencies and the 
5-element code is good for the sixth, seventh, and eighth frequencies.  The fifth frequency, 
however, requires more than seven elements.  In figure 3, the rod shapes for the fifth mode are 
plotted for the FEM code and the PDE value.  We see that the antisymmetric shape specified by 
the PDE value probably requires at least 13 segments to describe it.



 9

 

Figure 3.  Shape of the beam for j = 3, 5, 7 element and PDE (real part of the shape). 

The two aerodynamic frequencies do not differ from their rigid values.  The elastic frequencies, 
however, are quite different from nonspinning values of ± Kω .  The first two positive frequencies 
are 150% and 130% greater than these values. 

Figure 4 shows the positive and negative first elastic frequencies divided by the zero-spin value 
given by equation 30.  When the first elastic frequency is much greater than the spin ( 200≈σ ), 
these ratios are near unity.  Figure 5 shows similar results for positive and negative second 
elastic frequencies. 

7. Bent Projectile Resonances 

In Murphy and Mermagen (5, 6), a bent rod was described by a pair of quartic curves: 

 
2 4

11 21
2 4

12 22

2 0

0 2.
EB d x d x L x

d x d x x L

δ = + − ≤ ≤

= + ≤ ≤
 (42) 

R
ea

l (
z3

, z
4)

 

Solid Curve = PDE 
----- (dash dash) Curve = 3 element 
-.-.-. (dash dot) Curve = 5 element 
........ (dot dot) Curve = 7 element 
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Figure 4.  1413 , ωφωφ −  vs. .σ  

 

Figure 5.  2625 , ωφωφ −  vs. .σ  
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These curves can then be used to calculate the inhomogeneous coefficients in equation 42.  For a 
slowly spinning finned missile, the aerodynamic coefficients, mAt , dominate while for a rapidly 
spinning projectile the dynamic coefficients, mDt , dominate. These inhomogeneous terms induce 
a modal response at the spin frequency that can have a large amplitude when the spin is equal to 
one of the transient frequencies.  The values of ijd  given in appendix D specify the very small 
deflection of the rod forward tip of 0.0015 in. 

For constant spin, special solutions of equation 39 have been calculated in Murphy and 
Mermagen (6).  These trim solutions have the form 

 ( ) = i t
n nq t s e φ . (43) 

Using 5 elements, the 12 ns ’s can be computed for fixed values of spin and σ .  The complex 
location of the forward end of the rod is specified by 11s . 

In figure 6, the amplitude of the forced motion of the forward end of the rod is plotted vs. σ  for 
two values of spin.  The resonances at 119.3,126.3=σ  occur when the positive first elastic 
frequency is equal to a spin value while the resonances at 21.9, 23.2=σ  occur when the positive 
second elastic frequency is equal to a spin value.  The amplitude of the flexing motion of the 
forward end of the rod is 70% of its diameter. 

 
Figure 6.  mag ( )11s  vs. σ  for 5-element code, φ  = 7200 rad/s, 6800 rad/s. 
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In Murphy and Mermagen (6), a nonlinear spin equation is derived: 

 ( ){ } ( )2
2 6 2 8 1 1 l+ – + – =X D A linear

I Re md Q iq J iq J g d Q g d Cφ , (44) 

where the cubic terms 8, , , and X D AI Q J Q  are defined. 

For a cone cylinder, the linear roll moment coefficient has a very simple form, 

 ( ) ( )l l= plinear
C C d Vφ . (45) 

Equations 39 and 44 for five elements can be integrated to show the occurrence of resonance 
with the positive first elastic frequency ( = 122.8σ ).  All initial conditions are made zero except 
for 0 = 7000 rad/s.φ   Figures 7–9 show the time variation of spin, angle of attack magnitude, and 
rod forward tip motion magnitude, 1 11, ,b bq qφ .  Resonance is clearly shown at t = 0.25 s when 
spin is near 7000 rad/s.  According to figure 9, the maximum amplitude of the forward rod 
motion is 30% of the rod diameter.  Thus, the motion amplification due to spin going through 
resonance is less than half its resonance value.  For rigid finned projectiles, relations between 
pitching motion amplitude due to spin varying through resonance and its resonance value are 
given in Murphy (8). 

 

Figure 7.  φ  vs. time for σ = 122.8, 0φ  = 7100. 

time (s) 
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Figure 8. mag ( )1bq  vs. time for σ = 122.8, 0φ  = 7100. 

 

Figure 9.  mag ( )11bq  vs. time for σ = 122.8, 0φ  = 7100.

time (s) 

time (s) 
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For the symmetric waveform of the first elastic mode for a nonspinning rod with no force 
loading, the maximum strain occurs at the midpoint. 

 ( ) ( )2

2

0
= 1 2 E

Mε x
∂ δ
∂

. (46) 

Figure 10 shows the variation of maximum strain with time.  For most metals, yield occurs for 
strain >0.0015.  Thus, figure 10 shows yield at resonance. 

 

Figure 10.  mag ( Me ) vs. time for σ = 122.8, 0φ  = 7100. 

8. Summary 

The previously derived FEM theory, which was applied to slowly spinning finned projectiles, 
has been extended to rapidly spinning spin-stabilized projectiles. 

Positive and negative elastic frequencies for a spin-stabilized projectile have been calculated, and 
their magnitudes have been shown to be significantly different for < 200σ . 

Resonance with the first elastic mode has been demonstrated, and very small rigid asymmetries 
have been shown to cause yield at resonance. 

time (s) 
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Appendix A.  Improved Partial Differential Equation 

The roll moment of inertia of a circular disk is ( ) ( )dxxmda2 2
2

d ρ and its transverse moment of 
inertia is ( ) ( )dxxmda 2

2
d ρ  where da  is ( ) 1L16 − and ( )x2ρ  describes the variation of moments of 

inertia along rod.  In the derivation of the partial differential equation (PDE) in Murphy and 
Mermagen,1 the disks were assumed to be point masses, i.e., 0a d = .  In Murphy and 
Mermagen,2 the kinetic energy associated with da  for a disk was shown to be dxTad , where  

 ( ) ( ) ( ){ }2 2 2
ad d y z 2T a md 2 2 Re 2i i 2i Q⎡ ⎤= Γ + Γ + φ Γ −φΓ Γ + Γ − φΓ ρ⎣ ⎦ , (A-1) 

where  e1qiQ = . 

According to Geradin and Rixen,3 two terms in adT  appear in the PDE for a flexing projectile: 

 ( )2 2ad ad
d y z y

y y

T Td md a 4 2 r 2 q
dt
⎛ ⎞ ⎛ ⎞∂ ∂ ⎡ ⎤− = Γ + φΓ + φ Γ + − φ⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎜ ⎟∂Γ ∂Γ⎝ ⎠ ⎝ ⎠

, (A-2) 

and  

( )2 2ad ad
d z y z

z z

T Td md a 4 2 q 2 r
dt
⎛ ⎞ ⎛ ⎞∂ ∂ ⎡ ⎤− = Γ − φΓ + φ Γ − − φ⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂Γ ∂Γ⎝ ⎠ ⎝ ⎠

 . (A-3) 

The contribution of dT~  to the improved PDE is obtained by multiplying the second term by i, 
adding it to the first term and differentiating the result with respect to x.  The improved version 
of equation 52 in Murphy and Mermagen1 is  

 ( )( ) ( )( ) ( )

( )

2 4
2 2
0 0 42 4

2 1 2 1

2
1 2

ˆ

    

4 2 .

E E
d

D
f f M f f E

d

k c
t x

c
g L c i pd V c c c d V

x

a L i E E ixQ N
x

δ δω ω

δ
δ

φ φ ξ ξ

∂ ∂
+ +

∂ ∂
∂⎡ ⎤

− + Γ + Γ − −⎢ ⎥∂⎣ ⎦
∂

= Γ − Γ + Γ + + + −
∂

 

(A-4)

 

 

                                                 
1 Murphy, C. H.; Mermagen, W. H.  Flight Motion of a Continuously Elastic Finned Missile.  Journal of Guidance, Control 

and Dynamics January–February 2003, 26, 89–98. 
2 Murphy, C. H.; Mermagen, W. H.  Spin-Yaw Lockin of an Elastic Finned Projectile; ARL-TR-3217; U.S. Army Research 

Laboratory:  Aberdeen Proving Ground, MD, August 2004. 
3 Geradin, M.; Rixen, D.  Mechanical Vibrations:  Theory and Applications to Structural Dynamics; John Wiley:  Chichester, 

1994, pp 172–174. 
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The first boundary conditions at x1 and x2 are modified by adding the sum of the first term and i 
times the second term evaluated at x1 and x2.  Equations 53 and 55 of Murphy and Mermagen1 
become 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

3
1

3 1 4 1 13

2 2
1 1 1 0 4 1

, ˆ , ,

, 2 , 2 2 ,

E
d D

d

x t
kc x t g c x x t

x
a L iQ x t x t i iQ x t g f

δ
δ

φ φ ω−

∂
+ +

∂
⎡ ⎤+ − Γ + Γ − − Γ = −⎣ ⎦

 

(A-5)

 

and 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( )( )

3
2

3 2 4 2 23

2 2
2 2 2 0 4 2

, ˆ , ,

, 2 , 2 2 , .

E
d D

d

x t
kc x t g c x x t

x
a L iQ x t x t i iQ x t g f

δ
δ

φ φ ω−

∂
+ +

∂
⎡ ⎤+ − Γ + Γ − − Γ =⎣ ⎦

 
(A-6)

 

The trim solution equations 78, 79, 81, 86, and 87 of Murphy and Mermagen1 are replaced by 

 
4 2

6 4 5 44 2
ET ET ET D

ET Tc
d d d dcE E E g
dx dx dx dx
δ δ δ δ δ− − + −  

* *
3 T T BF BE N E Eξ= − − + , (A-7) 

 
( ) ( ) ( ) ( ) ( )

( )

3
1

4 1 1 6 13

2
4 0 4 1

5

,

ET
D T T T

d L T T T

d x
g c x x E x

dx
ia d V g C LN g fα

δ
δ ξ

φ ξ ω−

+ + −Γ⎡ ⎤⎣ ⎦

⎡ ⎤− − = −⎣ ⎦

 
(A-8)

 

 
( ) ( ) ( ) ( ) ( )

( )

3
2

4 2 2 6 23

2
4 0 4 2

5

,

ET
D T T T

d L T T T

d x
g c x x E x

dx
ia d V g C LN g fα

δ
δ ξ

φ ξ ω−

+ + −Γ⎡ ⎤⎣ ⎦

⎡ ⎤− − =⎣ ⎦

 
(A-9)

 

 

4 2
1 1 1

6 4 5 14 2

* *
3 4 ,D

T T BF B cT

d w d w dwE E E w
dx dx dx

dcE N E E g
dx

ξ δ

− − +

= − − + +
 

(A-10)
 

and 

 
4 2

^ 4 54 2 0 ; 2, 3m m m
m

d w d w dwE E E w m
dx dx dx

− − + = = , (A-11) 

where  
 ( )( )4 4 1 2 ,f f f M DE g c i d V c c cφ⎡ ⎤= + + −⎣ ⎦  (A-12) 

 2 2
6 05 ,dE a Lφ ω−=  (A-13)



 19

and 

 
( )( ) ( )( ) ( )

( )

4 1 2 1

2

0 6  .

D EB
B f f M B f B f EB

B
B

d c
E g c i d V c c c i d V

dx
dE
dx

δ
φ δ φ

φ ω δ

⎡ ⎤
= + Γ + Γ − −⎢ ⎥

⎣ ⎦
Γ

+ +

 

(A-14)

 

The transient solution equations 92, 94–96, and 98 of Murphy and Mermagen1 are replaced by 

 
4 2

*k k k D
3 6k 4k 5k k 4 kc 3k k4 2

d ψ d ψ dψ dcb – E – E + E ψ – g ψ = E – N
dx dx dx dx

, (A-15) 

 
4 2

*4 4 4 D
3 6k 4k 5k 4 3k k 4 kc4 2

d w d w dw dcb – E – E + E w = E – N + g ψ
dx dx dx dx

, (A-16) 

 
4 2

m m m
3 6k 4k 5k m4 2

d w d w dwb – E – E + E w = 0 ; m = 5,6
dx dx dx

, (A-17) 

 
( ) ( )

( )( )

3
11 1

4 7 3 7 63

2 1 1
4 0 3 4 7 12 ,

k
k D k kc k k

d k L k k k

d xd g E c b E E
dx dx

a A i d V g C LN b g E fα

ψψ ψ ψ

φ ω

− −

− − −

⎡ ⎤
+ − + −⎢ ⎥

⎣ ⎦
⎡ ⎤+ − − = −⎣ ⎦

 

(A-18)

 

and 

 
( ) ( )

( )( )

3
21 1

4 7 3 7 63

2 1 1
4 0 3 4 7 22 ,

k
k D k kc k k

d k L k k k

d xd g E c b E E
dx dx

a A i d V g C LN b g E fα

ψψ ψ ψ

φ ω

− −

− − −

⎡ ⎤
+ − + −⎢ ⎥

⎣ ⎦
⎡ ⎤+ − − =⎣ ⎦

 

(A-19)

 

where 

 ( )2 2 2
6 04 2 ,k d k kE a L A i Aφ φ ω−= − +  (A-20) 

( ) 2
7 02 ,k d k kE a LA A iφ ω−= −  (A-21) 

and 

 ( )1
3 1

ˆ1 2 .kb k A iω φ−= + −  (A-22) 

For simplicity, the small Magnus contribution to the boundary conditions in this appendix have 
been neglected.
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Appendix B.  Integrals 

B.1  Aerodynamic Coefficents 

 
 

[ ]

[ ]
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B.2  Functions of Time 
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Appendix  C.  Magnus Terms 

  

( ) ( )
3 3

0 0

3 3

0 0

x x

1M Npα f M 3M Mpα f M
x x

x x

1MB fM B 3MB fM B
x x

c = C = c x dx c = C = c x xdx

J = c Γ dx J = c Γ xdx

∫ ∫

∫ ∫
 

 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1
1 /
qj fM q e j

0

1
2 /
qj fM q j 1 e

0

1

pj1 e fM p
0
1

Bpj e fM B p
0

ĥ = c x N z dz x = L z + z

ĥ = c x N z xdz z = x L + j –1

ĥ = L c x N z dz p,q = 1,2,3,4

ĥ = L c Γ N dz

⎡ ⎤⎣ ⎦

∫

∫

∫

∫

 

 

BpaBpc1pa1pc
2
qc

2
qa

1
qa

1
qc ĥ,ĥ,ĥ,ĥ,ĥ,ĥ,ĥ,ĥ  are calculated from Bpj1pj

2
qj

1
qj ĥ,ĥ,ĥ,ĥ  in the 

same manner as papc ff ,  were computed from pjf . 

Bm1mn2n1 h,h,h,h  are then computed in the same way as mf . 
 

( ) ( ) ( ) ( )
( )

1
/

pqj fM q p e j
0

j 1 e

ĥ = c x N z N z dz x = L z + z

z = x L + j –1

p,q = 1,2,3,4

∫
 

 

mnh  is computed from pqjĥ  in the same manner as mnf  was computed from pqjf̂ . 
3n,m ≥ . 
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( )
( )

( )
( )
( )

( ) ( )( )

* 2
11 1 1M

* 2
21 1 3M

*
22 X

* 2
1n 1 1n

* 2
2n 1 2n

* 2
m1 1 m1

* 2
m2 d 2m

* 2 2 2
mn 1 mn 0 1 mn

T = g d V c

T = – g d V c

T = –I

T = – g d V h

T = – g d V h

T = – g d V h

T = 2md a b
ˆT = – g d V h – md L 2ω ω kc m,n 3≥

 

 
( )( )

( )( )

( )( )

1A 1B 2B 1MB

2A 3B 4B 3MB

mA Bm aBm Bm aBm Bm

t = J + i d V J + J

t = J + i d V J + J

t = f + f + i d V g + g + h m 3

φ

φ

φ ≥

 

 

The Magnus force on the aerodynamic extension has a small effect on the flexing motion and has 
been neglected in the previous relations. 
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Appendix D.  Projectile Parameters 

1 2 3 1ρ ρ ρ= = = 0cx =  

L = 9 V = 3000 ft/s 

d = 0.35 ft ρ = 0.002 slugs/ft3 

m = 1.60 slug 10 2301 == xx  

xI = 0.0245 slug-ft2  

tI = 1.335 slug-ft2  
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 1 2

1 2 3

= 20 = 136 = 1.99 = .50
= 20.0 = 55.1 = 108

R R R R R

R R R

σ ω ω ω ω ω
ω ω ω ω ω ω
φ

 

Table D-1.  Transient frequencies and damping rates. 

Code k k Rωφ  k Rωλ  

3 element 1 2.003 –0.0074 
5 element 1 2.002 –0.0074 
7 element 1 2.003 –0.0074 
PDE 1 1.993 –0.0075 
    
3 element 2 0.502 –0.0263 
5 element 2 0.502 –0.0263 
7 element 2 0.502 –0.0263 
PDE 2 0.505 –0.0265 
    
3 element 3 51.25 –0.0113 
5 element 3 50.91 –0.0168 
7 element 3 50.85 –0.0167 
PDE 3 50.71 –0.0112 
    
3 element 4 –32.85 –0.0213 
5 element 4 –32.76 –0.0139 
7 element 4 –32.74 –0.0138 
PDE 4 –32.67 –0.0139 
    
3 element 5 138.61x –0.0186 
5 element 5 130.02x –0.0274 
7 element 5 125.93x –0.0256 
PDE 5 118.94 –0.0237 
    
3 element 6 –70.48 –0.0305 
5 element 6 –69.20 –0.0161 
7 element 6 –68.57 –0.0159 
PDE 6 –67.29 –0.0158 
    
3 element 7 172.74x –0.0271 
5 element 7 161.55 –0.0255 
7 element 7 160.45 –0.0245 
PDE 7 159.76 –0.0326 
    
3 element 8 –01.99x –0.0164 
5 element 8 –93.05 –0.0150 
7 element 8 –92.62 –0.0148 
PDE 8 –92.34 –0.0144 

Note:  PDE = partial differential equation. 
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List of Symbols, Abbreviations, and Acronyms 

( )f jc x  aerodynamic force distribution functions 

d maximum rod diameter 

E(x) Young’s modulus 

E0 Young’s modulus at rod center  

F zy iFF +  complex transverse aerodynamic force 

da  ( ) 116 −L  

1g  2 2ρV S  

I(x) ( ) ( )4 42 2=d y dydz d z dydz∫∫ ∫∫ , area moment of rod 

I0   area moment at rod center  

Ix axial moment of inertia of projectile 

It0 transverse moment of inertia of projectile about rod center 

L rod length/rod maximum diameter 

eL  jnL , dimensionless length of element 

m projectile mass 

=p φ  spin 

jn  number of rod elements 

tn  2 + 2jn  

1q  +β iα , complex angle of attack of central disk (nsc) 

1eq  – iθψ  complex yaw and pitch of central disk (nsc) 

2q  iθ−ψ  complex yaw and pitch rate of central disk (nsc) 

nq  = 3.4… tn n  FEM connectors  (nsc) 

bnq  = 3.4… tn n  FEM connectors  (bfc) 
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S 2 4dπ   

V magnitude of projectile velocity 

1 2,x x  location of beam ends 

01 23,x x  dimensionless length of fore and aft aerodynamic extensions 

cx  axial location of center of mass 

α  angle of attack of central disk (nsc) 

β  angle of sideslip of central disk (nsc) 

Γ  E

x
∂δ
∂

, complex cant of disk 

Mε  maximum strain of rod 

Eδ  Ey Ezi+δ δ , lateral displacement of disk (nsc) 

φ  roll angle  

kφ  frequency of k-th mode 

kλ  damping of k-th mode 

ρ  air density 

1ρ  axial variation of mass 

σ  1 Rω ω  

1ω  lowest elastic frequency of beam in vacuum 

Rω  rigid projectile frequency for = 0,1gs  

( )= , ,x y zF F F F  aerodynamic force exerted on missile (nsc) 

( )= x y zM M ,M ,M  aerodynamic moment exerted on missile (nsc) 

{ }Re z  real part of z 

{ }Im z  imaginary part of z 

Carat superscript denotes quantity for a single element. 

Tilde superscript denotes elastic parameter for bent missile. 
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B subscript denotes parameter for bent projectile. 

E subscript denotes an elastic coordinate parameter (nsc). 

b subscript denotes an body-fixed coordinate parameter (bfc). 

(bfc) body-fixed coordinates 

(nsc) nonspinning coordinates 
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